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Threshold Function (TF) is a subset of Boolean function that can be represented with a single linear threshold

gate (LTG). In the research about threshold logic, the identification of TF is an important task that determines

whether a given function is a TF or not. In this article, we propose a sufficient and necessary condition for

a function being a TF. With the proposed sufficient and necessary condition, we devise a TF identification

algorithm. The experimental results show that the proposed approach saves 80% CPU time for identifying

all the 8-input NP-class TFs as compared with the state-of-the-art. Furthermore, the LTGs corresponding to

the identified TFs obtained by the proposed approach have smaller weights and threshold values than the

state-of-the-art.
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1 INTRODUCTION

In recent years, since nanoscale devices [6], such as Resonant Tunneling Diodes [2], Single
Electron Transistors [22], Quantum Cellular Automata [16], and Memristors [21], have been
rapidly developed and are available for implementing threshold logic gates, researchers pay
more attention to the threshold logic than before [7, 8, 11, 14, 24]. Different from the traditional
Boolean logic, threshold logic is another representation for Boolean functions. A function that
can be represented with a single linear threshold gate (LTG) is called a threshold function

(TF). However, not all the functions can be represented by a single LTG. For example, a function
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Fig. 1. (a) The threshold network of f = x1x2 + x3x4. (b) The LTG of f = x1x2 + x1x3.

f = x1x2 + x3x4 is a non-threshold function (non-TF) and it requires a threshold network with
multiple LTGs to represent it as shown in Figure 1(a).

An LTG consists of n binary inputs, x1, . . . ,xn , with the corresponding weights,w1, . . . ,wn , and
a threshold value T . The output f is evaluated as the following equation:

f (x1,x2, . . . ,xn ) =
⎧⎪⎨
⎪
⎩

1, if
∑n

i=1 xiwi ≥ T
0, otherwise.

An LTG can also be represented as a weight-threshold vector [w1,w2, . . . ,wn ;T ]. For example,
the corresponding LTG of function f = x1x2 + x1x3 is shown in Figure 1(b) and can be expressed
as [2, 1, 1; 3].

The studies of threshold logic began from the 1960s. K-asummability [17] was proposed to be a
necessary and sufficient condition for a function to be a TF. However, the condition cannot report
the corresponding weights and threshold value [4, 5, 23]. The first approach to enumerating TFs
was proposed in 1961 [25]. In 1970, a linear programming method for enumerating TFs of 8 input
variables was proposed [19]. In general, when a function is identified as a TF, the weights and
threshold value have to be determined as well for implementation. Furthermore, TF identification
is essential in the synthesis of threshold logic network (TLN) [3, 8, 12]. This is because some
synthesis techniques rely on TF libraries to generate cost-effective TLNs. While there are currently
NP-class TF libraries with up to 8 inputs, our proposed approach for TF identification offers a more
efficient method that can accelerate the process. This approach has the potential to identify TFs
with more than 8 inputs, such as 9-input TFs.

In this work, we propose another sufficient and necessary condition for a function being a TF.
With this condition, we also devise an algorithm to generate a composite inequality system. Since
the generated composite inequality system contains fewer inequalities on variables, the algorithm
is more efficient to identify all the 8-input NP-class TFs than the state-of-the-art [15].

The main contributions of this article are as follows:

(1) We propose a more efficient sufficient and necessary condition for a function being a TF and
construct a composite inequality system with this condition.

(2) We propose a new initial weight assignment to accelerate the weight assignment procedure.
(3) The proposed TF identification algorithm saves 80% CPU time and obtains more optimal

LTGs with smaller weights and threshold values for identifying all the 8-input NP-class TFs
as compared to the state-of-the-art.

The rest of this article is organized as follows: Section 2 introduces the background of threshold
logic. Section 3 introduces some previous works related to this topic. Section 4 presents the pro-
posed sufficient and necessary condition, and the TF identification algorithm. Section 5 discusses

ACM Transactions on Design Automation of Electronic Systems, Vol. 28, No. 5, Article 86. Pub. date: September 2023.



A Constructive Approach for Threshold Function Identification 86:3

Fig. 2. (a) The LTG of f = x1 + x2 [11]. (b) Hyperplane and half-spaces of an OR gate [11].

the time complexity of our approach. Section 6 shows the experimental results. Section 7 concludes
this article and discusses the future work.

2 PRELIMINARIES

In this section, we introduce some fundamentals about threshold logic.

2.1 Backgrounds

The on-set (off-set) of a Boolean function f is a set of minterms such that f = 1 (f = 0).
An NP-class is a group of Boolean functions that can be derived from each other by permuting

the input variables or taking their complements. For example, functions such as f = x1 + x2x3,

д = x3 + x1x2, and h = x
′
1 + x2x3 are in the same NP-class.

An n-input function f (x1,x2, . . . ,xi , . . . ,xn ) is said to be positive unate in variable xi if and only
if for all possible values in variable x j , j � i ,

f (x1,x2, . . . ,xi−1,xi = 1,xi+1, . . . ,xn ) ≥
f (x1,x2, . . . ,xi−1,xi = 0,xi+1, . . . ,xn ).

If f is positive unate for each variable, then f is said to be a unate function or the function has the
unateness property.

2.2 Hyperplane and Half-space

A TF can be represented as a hyperplane H in an n-dimensional space, i.e., H :
∑n

i=1 xiwi = T .
The hyperplane separates the on-set minterms and off-set minterms of TF in two half-spaces.
This is the linear separability of a TF. The on-set minterms are located in the positive half-
space H+ :

∑n
i=1 xiwi ≥ T , while the off-set minterms are located in the negative half-space

H− :
∑n

i=1 xiwi < T .
For example, as the LTG of function f = x1 + x2 shown in Figure 2(a), there exists a hyperplane

L : x1 + x2 = 1 separating the on-set minterms, x1x2, x
′
1x2, x1x

′
2, from the off-set minterm, x

′
1x
′
2,

as shown in Figure 2(b). Therefore, a TF can be interpreted as a function having a hyperplane
separating two half-spaces.

2.3 Chow’s Parameter

Chow’s parameter is used to determine the variable ordering of a TF in the previous work [15, 20].
Given a function f (x1,x2, . . . ,xn ), the Chow’s parameter P ( f ) is a vector defined in the following
equation:

P ( f ) = (p1 ( f ),p2 ( f ), . . . ,pn ( f );p0 ( f )),
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where pi ( f ), 1 ≤ i ≤ n, is the number of minterms in the on-set for which xi = 1, and p0 ( f ) is the
number of minterms in the on-set of f . The elements in Chow’s parameters about two variables
induce the relationship between the corresponding weights of these two variables [20]. Therefore,
the input variable with a larger pi ( f ) has a larger weight in its LTG.

2.4 Shannon’s Expansion

Shannon’s expansion decomposes a function f (x1,x2, . . . ,xn ) in the n-dimension Boolean space
Bn into two cofactor functions as the following equation:

f (x1,x2, . . . ,xn ) = x
′
i · f (xi = 0) + xi · f (xi = 1)

for 1 ≤ i ≤ n, where f (xi = 0) and f (xi = 1) are cofactor functions with respect to xi .

2.5 Equivalence Classes

Muroga et al. [18] selected a representative function f (x1,x2, . . . ,xn ) for every NP-class of TFs
with the following criteria:

(1) ∀i ∈ {1, . . . ,n}, f (xi = 0) ≤ f (xi = 1),
(2) x1 � x2 � · · · � xn , where xi � x j denotes f (xi = 0,x j = 1) ≤ f (xi = 1,x j = 0).

We use these criteria to select representative TFs for all NP-classes. The first criterion indicates
that the function is positive unate in every variable [9]. Without loss of generality, we assume that
the weights and threshold value are positive, and thus the TF is positive unate in every variable.
This is because the negative weights and negative threshold value in an LTG can be converted to
positive ones by applying the positive-negative weight transformation method [17]. The second
criterion indicates w1 ≥ w2 ≥ · · · ≥ wn . In this work, we assume that the weights in the weight
vector are sorted in a descending order.

3 RELATED WORKS

In this section, we review some related works about threshold function identification.
The TF identification methods can be divided into two classes: (1) integer linear program-

ming (ILP)-based methods and (2) non-ILP-based methods. The ILP-based method [10, 19, 26]
formulated the TF identification problem as an ILP problem and expolited ILP solvers to deter-
mine the weight-threshold vector of the function.

The non-ILP-based methods [15, 20] apply heuristics to assign weights and threshold value to
a function. Neutzling et al. [20] propose a method to generate an inequality system from irredun-

dant sum-of-products (ISOPs) of a function. Then, a weight assignment procedure adjusts the
weights and checks the consistency of the inequality system. If consistent assignments about the
weights are found, then a TF is identified and the threshold value is computed; otherwise the func-
tion is an undetermined function. This method is able to identify all the TFs with up to six variables.

The procedures of inequality system generation and weight assignments are then improved by
Liu et al. [15]. First, Liu et al. simplify the inequality system by removing redundancies. Then, they
propose a new weight assignment algorithm that searches weights from the solution space more
comprehensively. The new algorithm identifies all the TFs with up to eight variables.

Unateness property is a necessary condition for being TFs, and the studies of References [15]
and [20] use this property to accelerate the identification procedure. When the function-under-
identification is a non-TF but with the unateness property, the weight assignment procedure
would be very time-consuming and in vain. To improve the TF identification algorithm, Lin et al.
propose a new and more effective necessary condition that detects more non-TFs with unateness
property [13].
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This new necessary condition can be seamlessly integrated into the identification algorithm in
Reference [15].

In Section 3.1, we introduce the sufficient and necessary condition for a function being a TF
[7, 17] and explain their weakness as we also propose a sufficient and necessary condition for
a function being a TF. In Section 3.2, we introduce the threshold function identification method
proposed in the state-of-the-art [15].

3.1 Summable Theorem

Summable Theorem [17] is a sufficient and necessary condition for a function being a TF. A function
f is said to be k-summable if and only if for some k , 2 ≤ k , there exist a subset of the on-set of

f , denoted as A, and a subset of the off-set of f , denoted as B, such that A(j ) is an on-set minterm

∈ A and B (j ) is an off-set minterm ∈ B, and

A(1) +A(2) + · · · +A(k ) = B (1) + B (2) + · · · + B (k ),

where + denotes the component-wise addition of vectors, provided that repetition of vectors in
the sets A and B are permitted. The Summable Theorem further states that a function f is a TF
if and only if f is asummable. Given the number of on-set (off-set) minterms s (t ) of a function
f , according to definition of k-summable, the time complexity of checking k-summable for the
function f is O (sk ∗ tk ).

Hsu et al. [7] then propose a Semi-critical Summable Theorem as a new sufficient and necessary
condition of threshold function, which reduces the searching space for Summable Theorem [17]
from on-set vectors and off-set vectors to ONCV s and OFFCV s.

Despite their benefits, these approaches have practical limitations when it comes to identifying
TFs. One major drawback is their inability to determine weight assignments. Additionally, the
approaches’ permission of repetition of vectors in setsA and B can lead to an unbounded checking
process, which is unsuitable for practical use.

3.2 Review of the State-of-the-art

The state-of-the-art approach first checks if a function is unate or not. If it is not unate, then
it is classified as a non-TF. However, if the function is unate, then the state-of-the-art method
proceeds to build the inequality system. Once the inequality system is established, the approach
identifies the functions that violate Variable Weight Ordering (VWO) as non-TFs. After the
function passes both of these necessary conditions, it enters the weight assignment procedure,
where the weight gradually increases. If the maximum weight in the assignment exceeds the the-
oretical weight upper bound mentioned in Reference [17], the function is then identified as an
undetermined function.

We use an example to demonstrate the TF identification algorithm [15]. Given an 8-input func-
tion f = x1x2x3x4x5+x1x2x3x4x6+x1x2x3x4x7+x1x2x3x4x8+x1x2x3x5x6+x1x2x3x5x7+x1x2x3x5x8+

x1x2x3x6x7+x1x2x3x6x8+x1x2x4x5x6+x1x2x4x5x7x8+x1x2x4x6x7x8+x1x2x5x6x7x8+x1x3x4x5x6+

x1x3x4x6x7x8 + x1x3x5x6x7x8 + x2x3x4x5x6x7 + x2x3x4x5x6x8 + x2x3x4x5x7x8 + x2x3x4x6x7x8 +

x2x3x5x6x7x8, the VWO of the function is determined according to the Chow’s parameter, i.e.,
x1 > x2 = x3 > x4 = x5 = x6 > x7 = x8.

The next step is to generate inequalities from the ISOPs form of f and f ′. The greater side of
the inequalities is obtained from the on-set of f , i.e., the product terms of f , and its lesser side
is obtained from the off-set of f , i.e., the product terms of f ′. There are some redundant product
terms in the on-set and off-set. Hence, it is not necessary to compare all the product terms in the
on-set with all the product terms in the off-set. For a product term in the on-set, it is redundant if it
has a larger weight summation than other product terms. Therefore, the don’t care bits of product
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Fig. 3. List of irredundant weight summation in the greater side and lesser side of f .

Fig. 4. Original inequality system of f .

terms in the on-set can be ignored in the generation of greater side of inequality. For example, the
product term x1x2x3x4x5 is corresponding tow1+w2+w3+w4+w5 where don’t care bits x6,x7,x8

are ignored. Furthermore, some products terms in the on-set can be removed as referring to the
VWO. For example, product terms x1x2x3x4x5 and x1x2x3x4x7 are both in the on-set of f . Since
x5 = x6 > x7 in the VWO, the weight summation of x1x2x3x4x5, i.e., w1 + w2 + w3 + w4 + w5, is
larger than that of x1x2x3x4x7, i.e., w1 + w2 + w3 + w4 + w7. Hence, x1x2x3x4x5 is redundant and
can be removed in the generation of the inequalities.

Similarly, the don’t care bits of product terms in the off-set have to be kept while non-don’t care
bits of product terms are ignored. For example, x ′1x

′
2 corresponds tow3 +w4 +w5 +w6 +w7 +w8. A

product term in the off-set is redundant if it has a smaller weight summation than other product
terms. The weight summation of x ′1x

′
5x
′
6, i.e.,w2+w3+w4+w7+w8, is smaller than that of product

terms x ′1x
′
7x
′
8, i.e., w2 +w3 +w4 +w5 +w6, as referring to the VWO. Hence, x ′1x

′
5x
′
6 is redundant.

The irredundant weight summations in the greater side and the lesser side of this example are
shown in Figure 3. Then, the weight summations in the greater side are paired with the weight
summations in the lesser side to generate the inequality system as shown in Figure 4.

The next step is to remove redundant inequalities from the inequality system of Figure 4. When
the weight summation in the greater side of an inequality is larger than that in the lesser side
under the VWO, this inequality is definitely satisfiable and does not need to check its consistency.
For example, the 2nd inequality “w1 +w2 +w3 +w4 +w7 > w1 +w2 +w3 +w7 +w8” in Figure 4 is a
redundant inequality, since x4 > x8 in the VWO. The algorithm removes the redundant inequalities
and constructs the irredundant inequality system as shown in Figure 5.
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Fig. 5. Irredundant inequality system of f .

Fig. 6. Irredundant inequality system of f with reformatted symbols.

The algorithm then reformats the same weight wi with the same symbol, i.e., A = w1,B = w2 =

w3,C = w4 = w5 = w6,D = w7 = w8. To simplify the inequality system, the algorithm removes
the symbols appearing in both sides among all the inequalities. The updated inequality system is
shown in Figure 6.

The weight assignment is the other important task in the TF identification algorithm. The
initial weight assignments are the least positive integers, i.e., A = 4,B = 3,C = 2,D = 1. The
algorithm keeps increasing the weight assignments with intent to satisfy more inequalities and
finally obtains the correct weight assignment (8, 7, 5, 3) satisfying all the inequalities. Note that
the weight assignment procedure does not exhaustively search every possible assignment. Instead,
it relies on false inequalities to determine the next assignment. The d value, d (wi ) = (occurrence
number of wi on the greater side of false inequalities) - (occurrence number of wi on the lesser
side of false inequalities), can be calculated for each weight wi . The algorithm then only adjusts
weights with a positive d value. The weight assignment procedure is shown as Figure 7. Under
the initial weight vector (4, 3, 2, 1), we have d (A) = −4, d (B) = 3, d (C ) = 1, d (D) = 5. Thus, we
can adjust the weight vector (4, 3, 2, 1) by increasing B,C , and D individually. By increasing B, the
weight vector becomes (5, 4, 2, 1); by increasing C , the weight vector becomes (5, 4, 3, 1); and by
increasing D, the weight vector becomes (5, 4, 3, 2). Note that all of the weights are distinct, and
the larger weight is increased if necessary when the smaller weight is increased. The algorithm
uses breadth-first search to obtain a successful weight vector (8, 7, 5, 3), meaning that the one
with the smallest weight summation is selected.
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Fig. 7. Weight assignment procedure of f .

Fig. 8. (a) The LTG of д = x1x2 + x1x3. (b) The LTG of h = x1x2 + x1x3 + x2x3. (c) The LTG of f = x1x2 +

x1x3 + x2x3x4, which is from the combination of д and h.

The last step is to compute the threshold value after having a correct weight assignment. The
threshold value is computed by adding 1 to the largest weight summation in the off-set. The
weight summations in the lesser side of Figure 3 under the weight assignment (8, 7, 5, 3) are
27, 28, 28, 29, 29, respectively. Hence, the threshold value is computed as 29 + 1 = 30. Finally,
the function f is successfully identified as a TF with the corresponding LTG [8, 7, 7, 5, 5, 5, 3, 3; 30].

4 THRESHOLD FUNCTION IDENTIFICATION

In this section, we present the proposed sufficient and necessary condition for a function being a
TF. We also propose a new initial weight assignment that can accelerate the weight assignment
procedure. Next, we introduce the flow of the proposed TF identification algorithm in detail.

4.1 Sufficient and Necessary Condition for Function Being TF

In this subsection, we present the proposed sufficient and necessary condition for a function
being a TF. We first use an example to explain the intention of this condition stated in Theorem 1.
Given two 3-input TFs д(x1,x2,x3) = x1x2 +x1x3 and h(x1,x2,x3) = x1x2 +x1x3 +x2x3, TF д can be
expressed as [3, 2, 2; 5] and TF h can be expressed as [3, 2, 2; 4] as shown in Figures 8(a) and 8(b).
Both TFs have the same weight vector [3, 2, 2], and the threshold value of д, Tд = 5, is larger than

the threshold value of h, Th = 4. Hence, a composite 4-input function f (x1,x2,x3,x4) = x
′
4 · д+
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x4 · h = x1x2 + x1x3 + x2x3x4 is also a TF and can be expressed as [3, 2, 2, 1; 5], where the 4th
weight = Tд −Th = 5 − 4 = 1, and Tf = 5 = Tд as shown in Figure 8(c).

Theorem 1. An (n + 1)-input function f (x1, . . . ,xn ,xn+1) is a TF with the weight-threshold vec-

tor [w1, . . . ,wn ,wn+1;Tf ] if and only if there exist a weight vector [w1, . . . ,wn], threshold values

Tf (xn+1=0) = Tf , and Tf (xn+1=1) = Tf −wn+1, such that

(1) the n-input cofactor function f (x1, . . . ,xn ,xn+1 = 0) is a TF with the weight-threshold vector

[w1, . . . ,wn ;Tf (xn+1=0)];
(2) the n-input cofactor function f (x1, . . . ,xn ,xn+1 = 1) is a TF with the weight-threshold vector

[w1, . . . ,wn ;Tf (xn+1=1)];
(3) wn ≥ (Tf (xn+1=0) −Tf (xn+1=1) ) > 0;

where wi is the corresponding weight of input xi .

Proof. (⇐=) Given the premises that two TFs [w1, . . . ,wn ;Tf (xn+1=0)], [w1, . . . ,wn ;Tf (xn+1=1)],
and wn ≥ (Tf (xn+1=0) −Tf (xn+1=1) ) > 0. To obtain the LTG of composite (n + 1)-input function f =

x
′
n+1 · f (xn+1 = 0)+ xn+1 · f (xn+1 = 1), we keep the weightsw1, . . . ,wn from the originaln-input TFs

and compute the additional weightwn+1 and threshold valueTf . We discuss this proof in two parts.
For the first part, since the input xn+1 = 0 contributes 0 (xn+1 ·wn+1 = 0) to the weight summation,
the threshold valueTf should be equal toTf (xn+1=0) . Similarly, for the second part, the input xn+1 =

1 contributes wn+1 (xn+1 ·wn+1 = wn+1) to the weight summation such that Tf should be equal to
wn+1+Tf (xn+1=1) . As combining both parts, we haveTf = Tf (xn+1=0) = wn+1+Tf (xn+1=1) , i.e.,wn+1 =

Tf (xn+1=0) −Tf (xn+1=1) . Since wn ≥ Tf (xn+1=0) −Tf (xn+1=1) is one of the premise, we have wn ≥ wn+1,
which meets the VWO mentioned in Section 2.5. As a result, the LTG of (n+1)-input function f is
obtained with the weight-threshold vector [w1, . . . ,wn ,Tf (xn+1=0) −Tf (xn+1=1) ;Tf (xn+1=0)]. Since the
weight-threshold vector of (n+1)-input function f has been determined, by the definition of TF, f
is a TF. This condition reveals that two n-input TFs with the same weight vector can be combined
to construct an (n + 1)-input TF.

(=⇒) Given the weight-threshold vector [w1, . . . ,wn ,wn+1;Tf ] of an (n + 1)-input TF
f (x1, . . . ,xn ,xn+1). To obtain the corresponding LTG for the cofactor function f (x1, . . . ,xn ,xn+1 =

0), we remove the input xn+1 and the weight wn+1 from the original LTG, and then update the
threshold value. Since the input xn+1 = 0 contributes 0 to the weight summation, the updated
threshold value is still Tf , i.e., Tf (xn+1=0) = Tf . Similarly, the resultant LTG of cofactor func-
tion f (x1, . . . ,xn ,xn+1 = 1) is obtained by removing xn+1 and wn+1 and updating the threshold
value Tf (xn+1=1) as (Tf − wn+1), i.e., Tf (xn+1=1) = Tf − wn+1. Since w1, . . . ,wn are not changed,
f (x1, . . . ,xn ,xn+1 = 0) and f (x1, . . . ,xn ,xn+1 = 1) can be expressed with the same weight vec-
tor [w1, . . . ,wn]. According to the VWO in Section 2.5, wn ≥ wn+1 and wn+1 > 0. Since we
have Tf (xn+1=0) = Tf , and Tf (xn+1=1) = Tf − wn+1 from the threshold value update, we obtain
wn+1 = Tf −Tf (xn+1=1) = Tf (xn+1=0) −Tf (xn+1=1) . As a result,wn ≥ wn+1 = Tf (xn+1=0) −Tf (xn+1=1) > 0.
In summary, two n-input TFs are obtained as (1) and (2), and their threshold valuesTf (xn+1=0) and
Tf (xn+1=1) satisfy (3). This condition reveals that for any (n+1)-input TF f , there exist two n-input
TFs that can be derived from f . �

4.2 Composite Inequality System Generation

According to Theorem 1 in Section 4.1, we have known that the weight-threshold vector of an
(n + 1)-input TF f (x1, . . . ,xn ,xn+1) can be obtained from the weight-threshold vectors of its
n-input cofactor functions f (x1, . . . ,xn ,xn+1 = 0) and f (x1, . . . ,xn ,xn+1 = 1) by composition.
The weights of the first n variables are equal to the weights of f (x1, . . . ,xn ,xn+1 = 0) and
f (x1, . . . ,xn ,xn+1 = 1), i.e., [w1,w2, . . . ,wn]. Therefore, an important issue is how to obtain two
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Fig. 9. (a) The irredundant inequality system of f (x8 = 0). (b) The irredundant inequality system of

f (x8 = 1).

Fig. 10. The composite inequality system of f (x1, . . . ,x8).

n-input TFs having the same weight vector of [w1,w2, . . . ,wn]. Since there might exist more than
one hyperplane that separates the on-set and off-set of a TF, a TF can be represented in different
weight-threshold vectors. For example, given a 3-input TFд(x1,x2,x3) = x1x2+x1x3, both [2, 1, 1; 3]
and [3, 2, 2; 5] represent д. Thus, in this subsection, we will present an efficient method generating
the inequality system for finding a common weight vector between f (x1, . . . ,xn ,xn+1 = 0) and
f (x1, . . . ,xn ,xn+1 = 1).

We first generate the irredundant inequality systems of n-input cofactor functions f (x1, . . . ,
xn ,xn+1 = 0) and f (x1, . . . ,xn ,xn+1 = 1). As Reference [15] did, we adopt that when two input
variables xi and x j have the same VWO in the (n+1)-input function f , their corresponding weights
wi and w j in the common weight vector will be equal, where 1 ≤ i, j ≤ n. Therefore, we use
the corresponding VWO of the function f in generating the irredundant inequality systems with
weights w1, . . . ,wn . For example, for the same (7 + 1)-input function f (x1, . . . ,x8) in Section 3.2,
we obtain the 7-input cofactor functions f (x1, . . . ,x7,x8 = 0) and f (x1, . . . ,x7,x8 = 1) with
respect to the input variable x8. Their irredundant inequality systems are generated as shown in
Figures 9(a) and 9(b). Note that the same weightswi are replaced with the same symbol according
to the VWO, i.e., A = w1,B = w2 = w3,C = w4 = w5 = w6,D = w7. To find a weight vector that
simultaneously satisfies the both inequality systems, we merge the inequality systems of f (x1, . . . ,
x7, x8 = 0) and f (x1, . . . ,x7,x8 = 1). The composite inequality system is shown in Figure 10.

We observe that there might exist redundant inequalities in the composite inequality system. For
two inequalities i and j, when the weight summation of i in the greater side is larger than that of j,
and the weight summations of i and j in the lesser sides are equal under the VWO, the inequality i
is redundant and can be removed. For example, in Figure 10, the 3rd and the 7th inequalities meet
this requirement. Hence, the 3rd inequality can be removed. Similarly, the 4th inequality can be
removed as well when comparing with the 6th inequality. However, when the weight summations
of i and j in the greater sides are equal, and the weight summation of i in the lesser side is smaller
than that of j under the VWO, the inequality i is redundant and can be removed. For example, in
Figure 10, the 1st and the 7th inequalities meet this requirement. Hence, the 1st inequality can
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Fig. 11. The simplified composite inequality system of f (x1, . . . ,x8).

Fig. 12. List of irredundant weight summation in the greater side and lesser side of f (x1, . . . ,x7,x8 = 0).

be removed. The simplified composite inequality system is constructed as shown in Figure 11.
Note that, since the inequality systems of cofactor functions themselves are irredundant, we just
compare an inequality i in the inequality system of f (x1, . . . ,xn ,xn+1 = 0) with an inequality j in
the inequality system of f (x1, . . . ,xn ,xn+1 = 1) for efficiency elevation.

4.3 Weight Assignment and Threshold Value Computation

We can use the weight assignment algorithm from Reference [15] to compute the weight vector
[w1, . . . ,wn] satisfying all the inequalities in the simplified composite inequality system, which is
the common weight vector for the two n-input cofactor functions. Next, we need to compute the
last weight wn+1 and the threshold value Tf of the (n + 1)-input function f (x1, . . . ,xn ,xn+1).

We first compute the threshold value of n-input cofactor functions, f (x1, . . . ,xn ,xn+1 = 0) and
f (x1, . . . ,xn ,xn+1 = 1). The weight summation in the greater side is strictly larger than that in
the lesser side because of the linear separability of a TF. According to Theorem 1, the last weight
has to satisfy wn+1 = Tf (xn+1=0) −Tf (xn+1=1) and the threshold value should be Tf = Tf (xn+1=0) . We
can obtain the least Tf (xn+1=0) by adding 1 to the largest weight summation in the lesser side of
f (x1, . . . ,xn ,xn+1 = 0). Similarly, we can obtain the largest Tf (xn+1=1) by reusing the least weight
summation in the greater side of f (x1, . . . ,xn ,xn+1 = 1). Thus, we will obtain the smallest wn+1

and threshold value Tf due to wn+1 = Tf (xn+1=0) −Tf (xn+1=1) and Tf = Tf (xn+1=0) .
For example, in Figure 11, assume that the initial weight assignment, A = 4,B = 3,C = 2,D = 1,

is represented as (4, 3, 2, 1), with corresponding d values of −3, 3, 1, and 1, respectively. We then
adjust the weights by increasing B, C , and D individually until we obtain a new weight vector of
(5, 4, 3, 2), where all weights are distinct. After a few iterations, the weight assignment algorithm
returns a common weight vector (7, 6, 4, 2) satisfying all the inequalities in Figure 11. The weight
summations in the greater side and lesser side of f (x1, . . . ,x7,x8 = 0) and f (x1, . . . ,x7,x8 = 1)
are shown in Figures 12 and 13, respectively. The largest weight summation in the lesser side of
f (x1, . . . ,x7,x8 = 0) is w2 +w3 +w4 +w5 +w6 = 6 + 6 + 4 + 4 + 4 = 24, and the threshold value
Tf (x8=0) = 24 + 1 = 25 as suggested. However, the least weight summation in the greater side of
f (x1, . . . ,x7,x8 = 1) is w2 +w3 +w4 +w5 +w7 = 6 + 6 + 4 + 4 + 2 = 22, and the threshold value
Tf (x8=1) = 22 as suggested.

However, according to (3) in Theorem 1, we have the requirement thatwn ≥ wn+1 = Tf (xn+1=0)−
Tf (xn+1=1) > 0. The computed weight vector (7, 6, 4, 2) does not satisfy (3) in Theorem 1 due to
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Fig. 13. List of irredundant weight summation in the greater side and lesser side of f (x1, . . . ,x7,x8 = 1).

Fig. 14. The weight assignment procedure for f (x1, . . . ,x8).

w7 = 2 < w8 = Tf (x8=0) −Tf (x8=1) = 25 − 22 = 3. As a result, we need to adjust the weight vector
(7, 6, 4, 2) by individually increasing the smaller weights. Note that the new weight vector still
has to meet the composite inequality system. The weight assignment procedure is summarized
in Figure 14. At last, the weight vector (7, 6, 4, 3) is obtained, as it satisfies (3) in Theorem 1, and
Tf (x8=0) = 25,Tf (x8=1) = 23. Also,w7 = 3 > w8 = Tf (x8=0) −Tf (x8=1) = 25−23 = 2, and the threshold
value is computed as Tf = Tf (x8=0) = 25. Hence, we successfully obtain the LTG of function
f (x1, . . . ,x8) with the weight-threshold vector [7, 6, 6, 4, 4, 4, 3, 2; 25]. Since the weight-threshold
vector of function f has been determined, f is identified as a TF.

4.4 New Initial Weight Assignment

In the last example in Section 4.3, we mentioned that the weight assignment algorithm can be
the same as Reference [15] and the initial weight assignment assigned a least weight to each
variable when searching a common weight vector of cofactor functions satisfying the VWO.
However, we observe that the initial weight assignment can be set “larger” such that the weight
assignment procedure for searching the common weight vector will be more efficient, thanks to
the proposed Theorem 1. Hence, in this subsection, we present our method about the new initial
weight assignment. The effect of this initial weight assignment can be seen in the experimental
results.

When we search the common weight vector for the two cofactor functions, we may already
have the original weight vector of each cofactor function. These two original weight vectors
reveal that the weight assignments smaller than themselves have been checked as illegal weight
assignments. Hence, we can consider to refer to these two original weight vectors for obtaining
the initial weight assignment. Assume that the original weight vector of the n-input cofactor
function f (x1, . . . ,xn ,xn+1 = 0) is [w01,w02, . . . ,w0n], and that of f (x1, . . . ,xn ,xn+1 = 1) is
[w11,w12, . . . ,w1n]. These two weight vectors might not be equal and they represent the lower
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ALGORITHM 1: Initial Weight Assignment.

Require: Two weight vectors of the n-input cofactor functions [w01,w02, . . . ,w0n],
[w11,w12, . . . ,w1n], and the VWO of the (n + 1)-input composite function [x1, . . . ,xn ,xn+1].

Ensure: The weight vector [w1, . . . ,wn] that meets the weight lower bound.
1: for i = 1 ∼ n do

2: wi ←max (w0i ,w1i );
3: end for

4: for i = (n − 1) ∼ 1 do

5: if xi > xi+1 & wi ≤ wi+1 then

6: wi ← wi+1 + 1;
7: else if xi = xi+1 & wi < wi+1 then

8: wi ← wi+1;
9: end if

10: end for

11: for i = 1 ∼ (n − 1) do

12: if xi = xi+1 then

13: wi+1 ← wi ;
14: end if

15: end for

bounds of legal weight assignments for each cofactor function. Thus, we propose to have the
initial weight assignment [w1,w2, . . . ,wi , . . . ,wn] that satisfies the following conditions:

(1) wi ≥ w0i ;
(2) wi ≥ w1i ;
(3) when pi ( f ) > pj ( f ), wi > w j ;
(4) when pi ( f ) = pj ( f ), wi = w j ;

where pi ( f ),pj ( f ) are the elements in Chow’s parameter of f , 1 ≤ i, j ≤ n. Conditions (1) and
(2) assume that the weights of the cofactor functions are the lower bounds of the corresponding
weights in the composite function. Conditions (3) and (4) mean that the initial weight assignment
must match the VWO of function f . The pseudo code of computing the initial weight assignment
satisfying conditions (1) ∼ (4) is shown in Algorithm 1. Note that, since the VWO of first n input
variables of the composite function f (x1, . . . ,xn ,xn+1) may not be identical to the VWO of each
cofactor function, f (x1, . . . ,xn ,xn+1 = 0) or f (x1, . . . ,xn ,xn+1 = 1), the proposed Algorithm 1
is a heuristic for elevating the efficiency of weight assignment procedure. We use an example to
explain the proposed initial weight assignment.

Given a 7-input function f (x1, . . . ,x6,x7) with the VWO x1 > x2 > x3 > x4 > x5 = x6 > x7,
its cofactor functions f (x1, . . . ,x6,x7 = 0) and f (x1, . . . ,x6,x7 = 1) are with the weight vectors
[9, 5, 4, 3, 2, 2] and [8, 7, 7, 3, 2, 2], respectively. By comparing the two weight vectors, we have the
initial weight assignment for the first 6 inputs as [9, 7, 7, 3, 2, 2]. To meet the VWO of f , we increase
the 2nd weight from 7 to 8. As a result, the initial weight assignment is [9, 8, 7, 3, 2, 2].

4.5 Overall Flow

The flowchart of the proposed TF identification algorithm is as shown in Figure 15. Given
an (n + 1)-input function f (x1, . . . ,xn ,xn+1) in ISOP form. We first check if the function f
satisfies the necessary condition in Reference [13] or not. If the function f does not satisfy
the necessary condition of being a TF, then it is identified as a non-TF. Then the algorithm
generates the composite inequality system using the proposed approach presented in Section 4.2.

ACM Transactions on Design Automation of Electronic Systems, Vol. 28, No. 5, Article 86. Pub. date: September 2023.



86:14 M.-J. Li et al.

Fig. 15. The flowchart of the proposed algorithm for TF identification.

If there exists an inequality that violates the VWO, then the function f is identified as a non-TF.
The algorithm assigns an initial weight assignment using the proposed method presented in
Section 4.4. If a common weight vector satisfying the inequality system is found, then we compute
the threshold values Tf (xn+1=0) and Tf (xn+1=1) of the cofactor functions f (x1, . . . ,xn ,xn+1 = 0) and
f (x1, . . . ,xn ,xn+1 = 1) with the proposed method presented in Section 4.3. If the threshold values
Tf (xn+1=0) andTf (xn+1=1) satisfy (3) in Theorem 1, then the algorithm then computes the last weight
wn+1 and the threshold valueTf of the function f , and f is identified as a TF; otherwise, the algo-
rithm enters a weight adjustment loop until it finds another common weight vector. Note that in
the weight assignment procedure, when an assigned weight is larger than the theoretically weight
upper bound mentioned in Reference [17], the function is identified as an undetermined function.

5 TIME COMPLEXITY ANALYSIS

In this section, we analyze and compare the time complexity of weight assignment procedure in
Reference [15] and our approach, which is the main part of TF identification algorithm. Given the
number of on-set (off-set) minterms s (t ) of a function, the theoretically upper bound of weight
m, and a user-defined parameter X in each weight assignment process. When there are multiple
weights wi with d (wi ) > 0, we adjust the top X weights based on the magnitude of their d values.
For example, if there are five weights with d values greater than zero and X = 3, then we only
adjust three weights with the largest d values.

To perform the weight assignment procedure, we need to check whether s ∗ t inequalities hold
for each assignment and adjust the assignment by one at a time. We repeat this process up to Xm

times before reachingm. Therefore, the time complexity of this procedure is O (s ∗ t ∗Xm ), which
is the product of the number of inequalities and the number of attempted assignments. Hence,
we know that the CPU time is highly related to the number of inequalities in the inequality
system.
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Table 1. Result Comparison Using Different Initial Weight Assignments

|Input| |T. TF| Initiate with [15] Initiate with [15] and Ours Initiate with Ours
CPU(s) CPU(s) Overhead(s) |Id. TF| CPU(s) Overhead(s)

6 994 0.01 0.03 0.02 994 0.04 0.02
7 28,262 4.27 5.24 1.60 28,262 4.48 1.96
8 2,700,791 56,985 33,138 902 2,700,791 13,469 780

Total − 56,989 33,143 − − 13,474 −
Ratio − 1 0.58 − − 0.23 −

In Reference [15], the number of inequalities in the inequality system for an (n+1)-input function

is s ∗ t . Since we know s+t
2 ≥

√
s ∗ t , the maximal value of s ∗ t is ( s+t

2 )2. Since s and t represent the

numbers of on-set and off-set minterms of an (n+1)-input function, s+t contains all 2n+1 minterms.

The upper bound of the number of inequalities in the inequality system is ( 2n+1

2 )2 = (2n )2 = 22n . In
our approach, the inequality system is built from two n-input cofactor functions. As a result, the

number of inequalities in our inequality system is smaller than or equal to ( 2n

2 )2 ∗2, which is 22n−1.
As compared to Reference [15], our weight assignment procedure only constructs a half number

of inequalities theoretically in the inequality system, which results in performance improvement
as shown in the experimental results.

6 EXPERIMENTAL RESULTS

We implemented the proposed algorithm in C++ language. Except for the fourth experiment, the
experiments were mainly conducted on a 2.9 GHz Linux platform (CentOS 7.9).

We conducted four experiments in this work. The first one is to show the efficiency and the
effectiveness of the proposed new initial weight assignment. The second experiment is to show
the efficiency of our TF identification algorithm and the optimality of computed weight-threshold
vector of the identified TFs. The optimal LTG in this work is defined as the LTG with the optimal
weight-threshold vector that is obtained by ILP-based approach [26]. The third one shows that the
proposed approach is also effective and efficient for identifying TFs with more than eight inputs.
The last one shows that our approach demonstrated significantly faster performance than the ILP-
based method for common threshold logic networks with 6-input TFs.

For the first experiment, we conducted the proposed TF identification algorithm using different
initial weight assignments for functions with 6 to 8 inputs. For the functions with fewer inputs, the
difference is unobvious. For fairness, we assume that our approach does not have n-input TFs at
hand when identifying (n+1)-input TFs. Hence, when computing the initial weight assignment for
an (n+1)-input function f (x1, . . . ,xn ,xn+1), we need to compute the weight vectors of twon-input
cofactor functions f (x1, . . . ,xn ,xn+1 = 0) and f (x1, . . . ,xn ,xn+1 = 1) recursively. We call this
extra cost the CPU time overhead. Table 1 shows the experimental results, including the required
CPU time and the CPU time overhead. Column 1 is the number of inputs. Column 2 is the total
number of TFs. Column 3 shows the required CPU time for identifying all these TFs using the initial
weight assignment from Reference [15], which is the least weight vector. Column 4 shows the
required CPU time when the weight assignment procedure starts with both the least weight vector
from Reference [15] and our initial weight vector mentioned in Section 4.4. An example procedure
is shown in Figure 16. The left part of Figure 16 is our initial weight vector (6, 4, 2, 1), while the right
part is the least weight vector (4, 3, 2, 1). The checking sequence of weight vectors is summarized
on the right of Figure 16, which selects the weight vector from both parts alternatively. Column 7
shows the required CPU time only using our initial weight vector. Columns 5 and 8 list the CPU
time overhead for computing the weight vectors of the cofactor functions, which is included in
the CPU time. Column 6 shows the number of TFs identified with our initial weight assignment.
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Fig. 16. An example procedure of weight assignments with our initial weight vector and the least weight

vector from [15].

Table 2. CPU Time and the Number of Obtained LTGs Comparison between [15] and Our Approach

|Input| |T. TF| [15] Ours
|Id. TF| CPU(s) |Opt. LTG| Ratio |Id. TF| CPU(s) Ratio |Opt. LTG| Ratio

4 17 17 <0.01 17 1 17 <0.01 − 17 1
5 92 92 <0.01 92 1 92 <0.01 − 92 1
6 994 994 0.01 994 1 994 0.05 5 994 1
7 28,262 28,262 5.19 28,249 0.9995 28,262 4.48 0.86 28,254 0.9997
8 2,700,791 2,700,791 68,616 2,695,746 0.9981 2,700,791 13,469 0.20 2,698,521 0.9991

According to Table 1, when using the initial weight assignment proposed in Reference [15], we
spent 56, 985 seconds to identify all the 8-input TFs. Similarly, we spent 33, 138 seconds to identify
all the 8-input TFs with the proposed initial weight assignment and that proposed in Reference [15].
When using the proposed initial weight assignment, only 13, 469 seconds are required to identify
all the 8-input TFs. When considering all the benchmarks, our initial weight assignment saves 77%
CPU time. This result indicates that the proposed heuristic of initial weight assignment is efficient
and effective for identifying all the NP-class with up to 8 inputs. However, we also notice that our
initial weight assignment spent more CPU time than Reference [15] for 6-input TFs. The reason
is that the weights in 5-input TFs are very small such that our initial weight assignment is only a
bit larger than that in Reference [15]. As a result, our approach incurred CPU time overhead for
computing the weight vectors of the cofactor functions.

The proposed TF identification algorithm has two features: one is the more simplified composite
inequality system based on Theorem 1; the other is the new initial weight assignment. Thus, in the
second experiment, we want to demonstrate the effectiveness and efficiency improvement of our
approach with the proposed features. That is, we compare the CPU time and the optimality of the
obtained LTGs in our approach against Reference [15] for identifying all the NP-class TFs with 4 to
8 inputs. The experimental results are shown in Table 2. According to Table 2, both our approach
and the state-of-the-art [15] identified all the NP-class TFs within 8 inputs. However, our approach
only spent 13, 469 seconds to identify all the 8-input TFs while Reference [15] spent 68, 616 seconds.
The CPU time reduction of our approach is 80%. We also observe that 2,700 more optimal LTGs are
obtained by our approach as compared to the state-of-the-art [15]. Table 3 shows the comparison of
the number of inequalities between the state-of-the-art [15] and ours. The number of inequalities
in our approach is only about 66% of that in the state-of-the-art [15]. This is the root cause of CPU
time-saving in our approach. In summary, our approach is more efficient and obtains better results
in identifying TFs than the state-of-the-art [15].
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Table 3. Number of Inequality Comparison

between [15] and Our Approach

|Input| [15] Ours Ratio

4 6 4 0.66

5 140 84 0.60

6 4,808 3,014 0.62

7 395,744 258,010 0.65

8 104,702,204 66,425,928 0.63

Table 4. CPU Time Comparison between [15] and

Our Approach with 9–15 Inputs

|Input| [15] CPU(s) Ours CPU(s) Ratio

9 407.64 165.21 0.41

10 2,175.06 502.67 0.23

11 5,711.39 1,279.99 0.22

12 11,401.10 3,398.37 0.30

13 20,717.80 9,293.14 0.45

14 28,070.90 26,731.00 0.95

15 45,405.50 85,614.46 1.89

For the third experiment, we conducted our approach for TFs with 9 to 15 inputs. Since most
of the synthesized threshold circuits do not contain LTGs with more than 15 inputs, we identify
TFs with 9 to 15 inputs to demonstrate the applicability of our approach. The total number of TFs
from 9 to 15 inputs is extremely enormous. Therefore, we randomly generate 100, 000 TFs for each
category. The results are summarized in Table 4. Since all the generated TFs can be identified by
the both approaches, we only report the required CPU time. According to Table 4, our approach
can identify the TFs with 9 to 14 inputs more efficiently. However, to identify the TFs with 15
inputs, our approach needs more CPU time. The reason is that our approach recursively identifies
f (x1, . . . ,xn ,xn+1 = 0) and f (x1, . . . ,xn ,xn+1 = 1) when identifying f (x1, . . . ,xn ,xn+1). Hence,
as n increases one, the required CPU time will be roughly double to triple. That is, the CPU time of
our approach increases exponentially with respect to the growth ofn. Thus, the proposed approach
is more appropriate to identifying TFs with less than 15 inputs.

For the last experiment, we compare the performance of using ILP solvers to find shared weights.
Due to version compatibility issues with the ILP solvers, we conducted our comparison on a 2.8
GHz Linux platform (CentOS 7.9) using Gurobi 9.5.2 [1]. We randomly generated 10, 000 test cases
for TFs with 9 to 15 inputs. The experimental results are shown in Table 5. According to Table 5, our
approach was better than the ILP-based method in terms of CPU time for TFs with 9 or fewer inputs.
For common threshold logic networks with 6-input TFs, our approach demonstrated significantly
faster performance than the ILP-based method. However, for TFs with 10 to 15 inputs, our approach
becomes slower due to the algorithm’s need for recursion. At present, we have not yet found a TF
library for 9 inputs available. Nevertheless, our approach shows promise in helping build such a
library in the future.

7 CONCLUSION AND FUTURE WORK

In this article, we propose a new sufficient and necessary condition for a function being a TF
and devise a TF identification algorithm with this condition. We also present a new initial weight
assignment method to accelerate the weight assignment procedure. The experimental results show
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Table 5. CPU Time Comparison between [1] and Our Approach

with 4–15 Inputs

|Input| |T. TF| [1] CPU(s) Ours CPU(s) Ratio

4 17 0.09 <0.01 0.11

5 92 0.49 <0.01 0.02

6 994 5.53 0.03 0.01

7 28,262 173.79 4.64 0.03

8 2,700,791 17,326.19 10,286.40 0.59

9 10,000 80.05 54.63 0.68

10 10,000 113.77 171.19 1.50

11 10,000 177.09 469.30 2.65

12 10,000 380.89 1,229.39 3.23

13 10,000 987.44 3,291.15 3.33

14 10,000 3,349.81 10,158.20 3.03

15 10,000 12,005.50 31,809.60 2.65

that the proposed approach saves 80% CPU time and obtains more optimal LTGs with smaller
weights and threshold values for identifying all the NP-class TFs with 8 inputs. In addition to
the acceleration of identifying TFs, the proposed sufficient and necessary condition constructs all
(n+1)-input TFs from their n-input cofactor TFs. Our future work is to identify all the 9-input NP-
class TFs based on the proposed sufficient and necessary condition, which will be the first attempt
in TF identification.
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